Nouvelles:

Notre mission est de former les citoyens de référence de l'avenir, les aider à coévoluer et créer.

Main Menu
Welcome to Pratiquer les vertus citoyennes. Please login or sign up.

13 Novembre 2024, 07:31:51 AM

Login with username, password and session length

Crier !

jacquesloyal

2007-11-12, 17:03:07
Etre loyal et ne pas mentir

Récents

Membres
Stats
  • Total des messages: 6,787
  • Total des sujets: 3,991
  • En ligne aujourd'hui: 7
  • Record de connexion total: 448
  • (18 Mai 2024, 04:24:13 AM)
Membres en ligne
Membres: 0
Invités: 41
Total: 41

Nouvelles capacités mathématiques !

Démarré par JacquesL, 23 Janvier 2008, 08:01:43 PM

« précédent - suivant »

JacquesL

Nouvelles capacités mathématiques !

[tex]d\tau^2=dt^2-\frac{dx^2}{c^2}=(1- \frac{v^2}{c^2})dt^2[/tex]

[tex]\frac{\partial^2 \psi}{\partial x^2} +\frac{2im}{\hbar} \frac{\partial \psi}{\partial t} =0[/tex]

Autres exemples, mais avec un problème imprévu dans l'affichage des termes de matrices, il arrive qu'un blanc séparateur de trop ne soit pas toléré :

[tex]rot \ \vec u = \nabla \wedge \vec u = \begin{bmatrix} 0 &\partial_x u_y - \partial_y u_x \\ \partial_y u_x - \partial_x u_y & 0 \end{bmatrix}[/tex]

[tex]\partial_x u_y- \partial_y u_x[/tex]

[tex]e^x = 1+x+\frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \cdots [/tex]

A general m x n matrix
[tex]\begin{bmatrix}a_{11} &\cdots &a_{1n} \\ \vdots &\ddots &\vdots \\ a_{m1} &\cdots &a_{mn}\end{bmatrix}[/tex]

A 3x3 matrix,
[tex]\begin{bmatrix}1 &2 &3\\4 &5 &6\\7 &8 &9 \end{bmatrix}[/tex],
and a 2x1 matrix, or vector, [tex]\begin{bmatrix}1 \\ 0 \end{bmatrix}[/tex]


[tex]\sum_{k=1}^n k = 1+2+ \cdots +n= \frac {n(n+1)}{2}[/tex]

[tex]\int_0 ^1 x^2 dx[/tex]


Documentation :

Documentation brève : http://www.forkosh.com/mimetex.html
Documentation complète : http://www.forkosh.com/mimetexmanual.html
Tous détails de la syntaxe : http://www.tug.org/begin.html#doc
Référence LaTEX sur deux pages : http://www.stdout.org/~winston/latex/latexsheet.pdf

JacquesL

#1
Capacités mathématiques rétablies !
Elles avaient disparu suite à la laborieuse montée en version SMF, de 1.1.2 à 1.1.5.
Rétabli hier les cinq lignes de code supplémentaires qui avaient sauté à la mise à jour.


Aussi à  : http://quantic.deonto-ethics.org/
>
> Sommaire actuel :
>
>       * 1 Ici, ce sont l'honnêteté et l'exactitude qui commandent, et ça change tout.
>       * 2 Aide
>       * 3 Parcours du débutant dans les limites atomiques
>       * 4 La faillite de notre géométrie apprise au lycée, au delà de la limite atomique.
>       * 5 Ethique de la connaissance. Débat : subjectivisme contre devoir d'objectivité en microphysique
>       * 6 Microphysique : ondulatoire ou poltergeist ?
>          *  o 6.1 Fréquence intrinsèque inobservable, donc impensable ?
>          *  o 6.2 Les contributions personnelles de BSchaeffer.  
>          *  o 6.2 Ce q'il vous faut savoir de la thermalisation.
>       * 7 "Probabilité de présence" qu'ils disaient...
>       * 8 Déséquilibre macroscopique : émetteurs chauds et évidents, absorbeurs discrets et incontrôlables
>       * 9 Capacités mathématiques de cette version
>       * 10 Démarrer avec MediaWiki
>
>
> C'était prévu pour rédiger en débat, mais les autres contributeurs
> semblent légèrement dégonflés.
> La dernière contribution de BSchaeffer, présentée en premier à à
> http://jacques.lavau.deonto-ethique.eu/disputatio/viewtopic.php?id=369 a été migrée
> par ses soins vers le site dédié. Bientôt très enrichie par ses soins,
> son accès est longtemps resté discret et dur à trouver. Ceci a été
> corrigé.

Monté cette nuit en version Wikimedia 1.12.
La migration des modifications MimeTex est achevée, et au delà :
maintenant les balises 'math' sont acceptées aussi bien que les
balises 'tex' par MimeTex. Vous pouvez désormais importer vos pages
Wikipedia sans devoir vous cogner le transcodage.

En 2002, j'avais bien rédigé une note de lecture contenant une
allusion au théorème de la variété requise, d'Ashby :
http://jacques.lavau.deonto-ethique.eu/AMS_Jacques_Melese.pdf

Je ne soupçonnais pas, et le présent débat sur fr.sci.physique l'a révélé, que le même
théorème permet de trancher net dans plein de débats vains sur la
distinction entre macroscopique et microscopique. Il me revient donc
de reprendre l'explication, cette fois à usage de physiciens.

J'avais également promis, voici environ deux ans, de rendre les arbres
de pertinence accessibles au grand public, et je n'ai encore jamais
tenu cette promesse. Or sans cette connaissance de base, les
contributions du débat populaire au débat savant, risquent fort de
continuer à tourner court.

JacquesL

#2
CiterQuand aurons-nous un forum fr.sci.physique où l'on pourra utiliser du code LaTeX pour écrire quelques expressions mathématiques lisibles, puisque sans langage mathématique, pas de physique (je parle des posteurs honnêtes qui publient sur le forum, pas de certains...)

Adam de Ranagar

Allez donc essayer de lire, par exemple :

[tex]\frac{\partial L}{\partial u_i}=\frac{\partial}{\partial x^{\mu}}\frac{\partial L}{\partial u_{i,\mu}}[/tex]

Voilà :

Il faut juste entrer les balises [tex] et [/tex] à la main.
Voilà, le bouton existe !

Non, le dalembertien n'est pas au catalogue :
[tex]\square\Psi=0[/tex]
[tex]\box\Psi=0[/tex]

JacquesL

#3
Nécessités pour La microphysique que l'on vous conte n'est pas la bonne.

[tex]a.sin(\omega.t)[/tex]

[tex]\alpha = \sqr{\frac{3.\lambda}{4.a}}[/tex]

[tex]\alpha[/tex]  [tex]\nu[/tex]  [tex]\Delta[/tex] [tex]\theta[/tex] [tex]\beta[/tex] [tex]\phi[/tex] [tex]\psi[/tex]

[tex]f = \frac{KE-PE}{h}[/tex]

Transformée de Fourier :
[tex]\hat{f} (\nu) = \int{f(x).e^{-2i\pi\nu x}dx}[/tex]
[tex]\hat f = \mathcal{F}[f][/tex]
Transformée inverse :
[tex]f (x) = \int{\hat{f}(\nu).e^{2i\pi\nu x}d\nu}[/tex]
[tex] f = \bar{\mathcal}{F}[\hat{f}][/tex]
[tex]\hat{f} (\nu)[/tex]
[tex]|\nu|[/tex]

[tex]\Pi(x) [/tex]  [tex]\longrightarrow \limits^{T.F.} [/tex]  [tex] \frac{sin(\pi\nu)}{\pi\nu}[/tex]

[tex]e^{-\pi x^2}[/tex]  [tex]\longrightarrow \limits^{T.F.} [/tex]  [tex]e^{-\pi \nu^2}[/tex]

[tex]\mathcal{F}[\lambda.f(x) + \mu.g(x)][/tex] = [tex]\lambda.\hat{f}(\nu} + \mu.\hat{g}(\nu)[/tex]

[tex]\mathcal{F}[f(a.x)][/tex] = [tex]\frac{1}{|a|} \hat{f}\left( \frac{\nu}a \right)[/tex]

Sigma
[tex]\sigma[/tex]
gamma :
[tex]\gamma[/tex]
[tex]\hbar[/tex]

Loi de Moseley :

    [tex]{\sqrt {\nu}}=k_{1}\cdot \left(Z-k_{2}\right)[/tex]

where:

    [tex]\nu[/tex] is the frequency of the main or K x-ray emission line
    k_{1}\ and k_{2}\ are constants that depend on the type of line