Nouvelles:

Notre mission est de former les citoyens de référence de l'avenir, les aider à coévoluer et créer.

Main Menu
Welcome to Pratiquer les vertus citoyennes. Please login or sign up.

14 Novembre 2024, 06:41:43 PM

Login with username, password and session length

Crier !

jacquesloyal

2007-11-12, 17:03:07
Etre loyal et ne pas mentir

Récents

Membres
Stats
  • Total des messages: 6,806
  • Total des sujets: 4,006
  • En ligne aujourd'hui: 13
  • Record de connexion total: 448
  • (18 Mai 2024, 04:24:13 AM)
Membres en ligne
Membres: 0
Invités: 124
Total: 124

Scintillation des étoiles. ?

Démarré par JacquesL, 20 Juin 2015, 02:13:00 PM

« précédent - suivant »

JacquesL

Je reste sur ma faim quant à une théorie précise du scintillement des étoiles.

Ce que j'ai lu jusqu'à présent utilisait la théorie de la diffraction selon Fresnel, à partir du diamètre de la pupille humaine, ce qui ne me satisfait qu'à demi. Avant-hier soir, pas de ciel permettant de vérifier à partir de quel diamètre d'objectif (pupille d'entrée), le scintillement disparaît. Une chose est sûre, la turbulence atmosphérique est très très variable. Certaines nuit, le bord de la lune était constamment déchiqueté par la turbulence.

Agrandir la pupille d'entrée avec des jumelles ou un télescope supprime le scintillement. Il serait de plus réputé que les étoiles bleues telles que Sirius scintillent plus que les rouges telles qu'Aldébaran. Sauf qu'en France Sirius est toujours plus basse sur l'horizon qu'Aldébaran...

Sur ce bobard wikipédien, la question est définitivement tranchée le 26 juin au soir : ciel clair, pas de vent, temps anticyclonique. Antarès scintille, mais pas Arcturus, qui est quasi-zénithale. Donc seule compte la hauteur sur l'horizon, à atmosphère égale.

De plus, le scintillement semble exiger une atmosphère haute très claire. Un léger voile de cirrostratus, et je n'observe plus de scintillement.

Analogie prometteuse : les caustiques qui marquent au fond d'une piscine l'éclairement du Soleil. Quelle que soit la profondeur, quelle que soit la hauteur du Soleil, on observe toujours des parois minces et lumineuses, dansant autour de zones sombres six à dix fois plus étendues. Voici 52 ans ans, personne ne savait pourquoi. Et à présent, on est plus avancés ?

Réponse de Fabrice Neyret (grenoblois) :

Citer"bien sur !  il reste zero mystere sur les caustiques au fond des piscines ! Du coup on les reproduits parfaitement en synthese d'image depuis au moins 2 decennies. (apres etre passé par les errements classiques, par ex devant les infinis au point de rebroussement a l'epoque naïve ou on le traitait purement en optique geometrique).

Caustiques... comme pour les lentilles gravitationnelles, ou mieux, les mirages, en particulier quand on regarde une image a travers l'air surchauffé d'un feu ou d'une route sous canicule. Par contre dans la piscine la source de divergence de refraction est une nappe quasi-2D, alors que pour l'air surchauffé, ou peut-etre un liquide saturé en
sucre, les variations d'indice de refraction sont dans la masse. "
Fin de citations.

Durant dix-sept ans, j'avais gardé une mauvaise opinion de la précision du modèle en arcs de cercle des fuseaux de Fermat. En applications astronomiques, il me semble avoir été beaucoup trop pessimiste et sévère. Disons qu'à 20 diamètres de source ou d'absorbeur, nous sommes en champ lointain, et l'approximation devient fiable. Le 11-cis-rétinal de nos rhodopsines des bâtonnets mesure dans les 18 Å de grand axe, dans les 5 à 10 Å de petit axe. On est donc en champ lointain à 36 nm de la rhodopsine, soit encore dans l'humeur vitreuse et fort loin de la pupille.
On peut donc calculer l'angle [tex]\alpha[/tex] du cône tangent pour chaque photon de chaque étoile. Ou plutôt angle du cône à son axe, qui est exactement l'angle au centre du demi-arc, d'apex à ventre.
La condition des fuseaux de Fermat s'écrit :
[tex]2. \alpha . R - 2 R . sin(\alpha) < \lambda / 4[/tex]
Soit au premier ordre : [tex]\alpha^3 < \lambda /(4 R)[/tex]

Pour Sirius, à 8,7 Al, et longueur d'onde principale 480 nm

Pour Aldébaran à 68 Al, et longueur d'onde principale 750 nm

Pour Saturne à minuit vrai, distante à 1300 Gm, blanche blafarde, on va prendre la moyenne à 550 nm.

Sirius : [tex]\alpha^3 < 1,46 . E-24[/tex] ==> [tex]\alpha[/tex] < 11,3 nrad. Largeur du cône du photon à 3000 m de distance : 68 µm.

Aldébaran : [tex]\alpha^3 < 2,9 . E-25[/tex] ==>  < 6,6  nrad. Largeur du cône du photon à 3000 m de distance : 40 µm.

Saturne : [tex]\alpha^3 < 1,06 . E-19[/tex] ==> \alpha <  473 nrad. Largeur du cône du photon à 3000 m de distance : 2,8 mm. Voilà qui devient comparable à nos pupilles humaines.

Conclusion : non, la géométrie des fuseaux de Fermat ne fournit pas, en tout cas pas à elle seule, une théorie quantitative de la scintillation des étoiles.

Ah ! Si on pouvait interroger les moutons, qui ont un très beau tapetum lucidum, pour savoir leur perception de la scintillation des étoiles ! Mais la communication scientifique avec eux est difficile.

JacquesL

Deux sites donnent des images plutôt précises sur la scintillation :
http://www.je-comprends-enfin.fr/index.php?/Notions-sur-la-lumiere/pourquoi-les-etoiles-scintillent-elles-et-pas-les-planetes/id-menu-73.html


Et http://intra-science.anaisequey.com/physique/categories-phys/34-astronomie/316-etoiles-scintillation
Vidéo d'Arcturus :
https://www.youtube.com/watch?v=SlY56hIdeuE

La première source citée donne une explication en "atomes et molécules", comme si à l'échelle du faisceau lumineux, l'atmosphère n'était pas dans les conditions de densité requises pour en faire un fluide. Cela mérite vérification !

Au sol, le libre parcours moyen est de l'ordre de 68 nm, et est multiplié d'un facteur 2,5 à 3 aux frontières de la stratosphère, soit moins de 200 nm ou 0,2 µm. Donc non, jamais dans la troposphère l'agitation moléculaire n'y devient l'échelle compétente pour traiter de la scintillation des étoiles.

Mais je n'ai toujours aucune idée de la maille de turbulence dans l'atmosphère, disons à 1000 m du sol. Selon l'observation visuelle des Cu-con (Cumulus congestus), on aurait envie de dire échelle décamétrique, alors qu'au sol la turbulence autour d'une cheminée est décimétrique voire centimétrique.


A présent il faut comparer les cônes géométriques s'appuyant sur notre oeil, et visant les diamètres connus de ces étoiles proches.
Rayon Sirius : 1,8 Soleil = 1,25 Gm
Rayon Aldébaran : 25 Gm
Rayon Saturne : 60,3 Mm
[tex]\alpha[/tex] géométrique Saturne : 46,2 µrad.
[tex]\alpha[/tex] géométrique Aldébaran : 38 nrad.
[tex]\alpha[/tex] géométrique Sirius : 15,2 nrad.

Seul l'angle au cône (optique géométrique) de Saturne s'éloigne significativement de l'angle au cône tangent de chaque photon sur chaque molécule rétinène.
D'où largeur de ce cône à la distance de 3000 m : 138 mm, qui s'ajoutent aux 5 mm de pupille moyenne de quadragénaire.